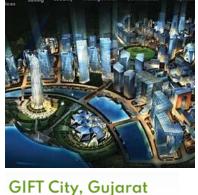


Trends Impacting Waterborne DTM Innovation

Trends Impacting Waterborne DTM Innovation

Get your Paint IGBC Certified

Shri Narendra Modi, Hon'ble Prime Minister of India


Shared Message in the IGBC Publication Green Built Environment

Narendra Modi Stadium, Ahmedabad

IGBC Platinum

GIFT City, Gujarat

IGBC Green Cities Platinum

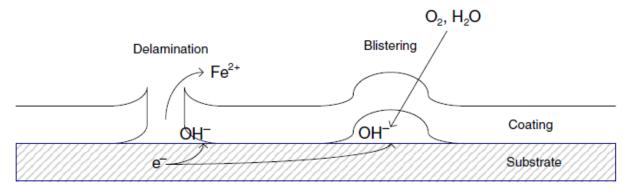
Dr. B. R. Ambedkar Telangana State Secretariat

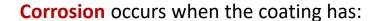
IGBC Green New Building Gold

Ref: 2
DTM Emulsions | 3

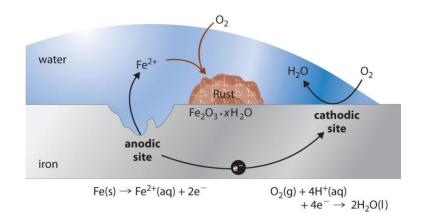
Focus Areas for DTM Technologies

ISO 12944 Classification	Typical Environi	
C1	Negligible	Air-conditioned rooms with low humidity
C2	Low	Dry climate with cold conditions
С3	Moderate	Moderate climate and moderate pollution
C4	Heavy	Sites with frequent condensation such as swimming pools
C5-M	Von. Hown	Marine and coastal areas with high salt content
C5-I	Very Heavy	Industrial with high solid particles in air





Coating Defects in DTM Applications



Delamination occurs when water molecules penetrate inside, disrupting the attractive force between the substrate and coating.

Blistering of coatings can be attributed to expansion due to swelling, gas inclusion, and osmotic processes.

- Poor moisture and water resistance
- Soft surface prone to abrasion

Analyzing Waterborne (WB) DTM Coatings

Advantages

- Water used as thinner and for cleaning
- Low VOC and environment friendly
- Low odor
- Good chemical resistance
- Fast recoating times
- Low dirt pickup
- High degree of flexibility
- Low flammability

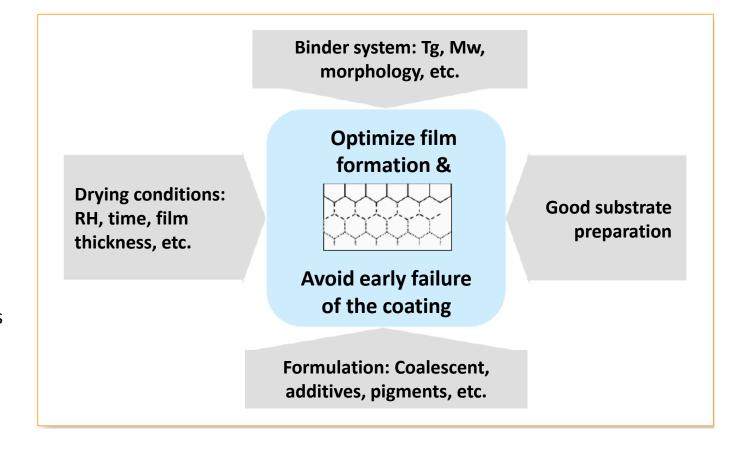
Disadvantages

- Flash Rust
- Expensive raw materials
- Influence of RH on evaporation of water
- Unable to endure freeze thaw cycles
- Prone to edge marks
- Short open time
- Foaming
- Fungus and bacteria attack

1. Binder/Emulsion

- Provides adhesion to metal
- Typically, self crosslinking and Tg > 20C
- Provide water and alkali resistance

2. Coalescent/ Co-solvents

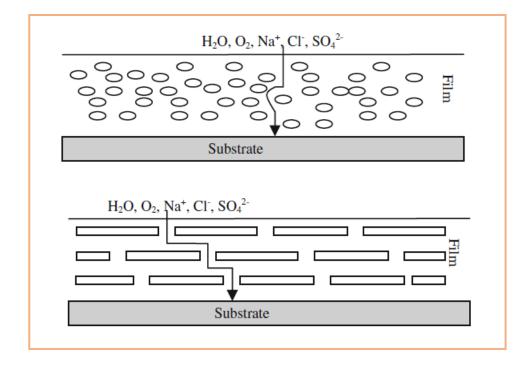

- Improve film formation by reducing MFFT
- Combination of hydrophilic (e.g. butyl glycol) and hydrophobic (e.g. DPnB) are typically used

3. Active Pigments/ Anticorrosion additives

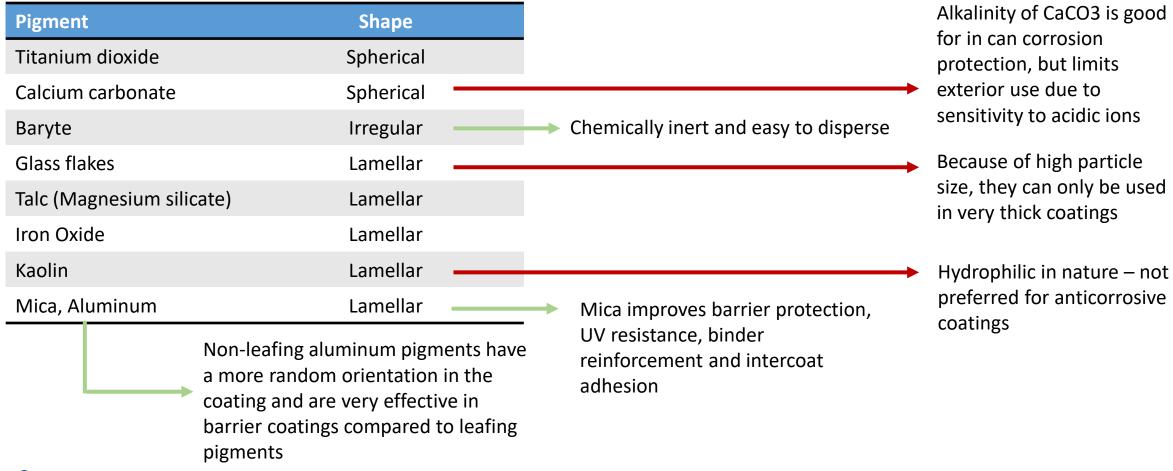
- E.g. Zinc phosphate to improve corrosion resistance
- TiO2, Iron Oxide & fillers improves barrier properties

4. Conventional Additives

 Dispersing agents, rheology modifiers, biocides, UV stabilizers, defoamers, wetting agents, adhesion promoters, etc.


Selecting Fillers & Pigments

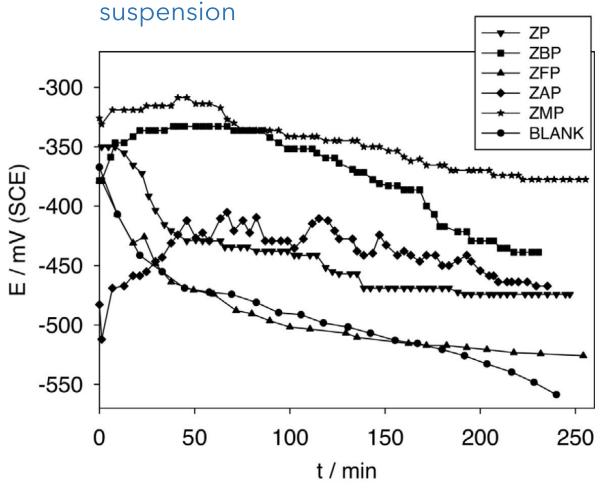
Pigment	Shape
Titanium dioxide	Spherical
Calcium carbonate	Spherical
Baryte	Irregular
Glass flakes	Lamellar
Talc (Magnesium silicate)	Lamellar
Iron Oxide	Lamellar
Kaolin	Lamellar
Mica, Aluminum	Lamellar


Key Point: Large spherical particles tend to offer lower anticorrosive protection than small spherical particles.

Effect of Pigment particle shape

In coatings pigmented with spherical pigments, the aggressive species can migrate almost straight through the coating. When the coating is pigmented with lamellar pigments, the aggressive species are provided a tortuous path of diffusion.

Selecting Fillers & Pigments

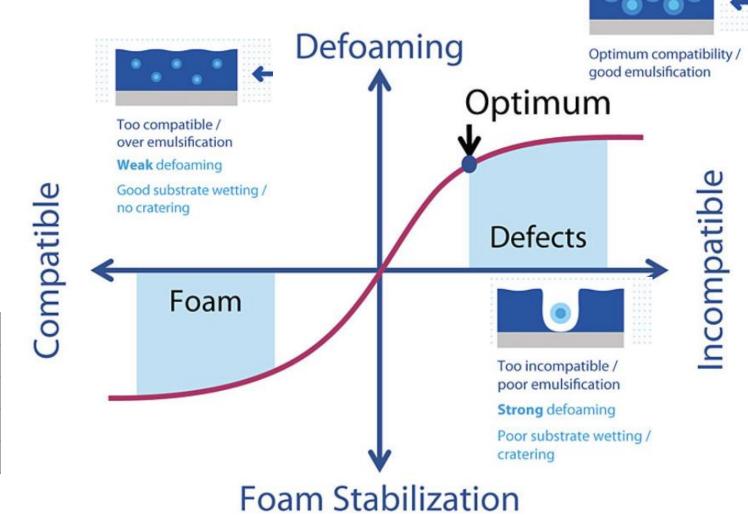


Selecting Active Pigments

Pigment	Icorr (uA/cm2)
Zinc Phosphate (ZP)	3.44
Zinc and Iron Phosphate (ZFP)	7.75
Zinc and aluminum phosphate (ZAP)	24.5
Zinc molybdenum phosphate (ZMP)	2.6
Zinc basic phosphate (ZBP)	3.27

- Phosphates help in metal passivation by plugging pores and defects of the oxide layer on metal.
- Anticorrosive performance of pigments:
 ZMP > ZBP > ZP > ZFP >>> ZAP
- Corrosion reduction with ZMP was 25 times that of blank steel

Steel corrosion potential as a function of the immersion time in pigments



Selecting the Right Defoamer


Unfortunately, there is no single defoamer for all systems. However, it is generally accepted that a defoamer should possess the following:

- 1. Controlled incompatibility (insoluble in system)
- 2. Low surface tension
- De-wetting characteristics

System	Defoamer Hydrophobicity	
Acrylic Emulsion	Low to moderate	
Styrene Acrylic	Moderate to very strong	
Vinyl Acetate	Moderate to strong	
Polyurethane Disp.	Low	

Selecting Dispersing Agents

- A very good dispersion of pigments is necessary to avoid agglomeration – resulting in film defects causing water penetration.
- More hydrophobic the dispersant, the better.

1. Conventional Dispersing Agents

Based on polyesters, polyamides, polyglycols and fatty acid chemistry (FAME). **General Characteristics:**

- Mol wt. = 500 2000 g/mol
- Good compatibility with the media
- Provide mainly electrostatic stabilization.

2. Polymeric Dispersing Agents

Mainly polyacrylates, polyester, polyether, or polyurethane-based systems **General Characteristics:**

- Mol wt. = 5000 50,000 g/mol
- Very effective for long term stabilization
- Provide mainly steric stabilization.

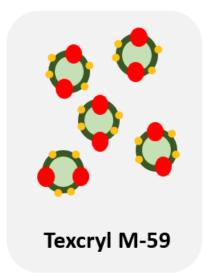
3. Ionic and Non-Ionic Dispersing Agents

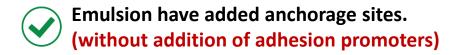
Mainly alkyl phenol ethoxylate and more precisely nonyl phenol ethoxylate **General Characteristics:**

- Mol wt. = 300 1,000 g/mol
- Good wetting property
- Provide mainly electrostatic stabilization.

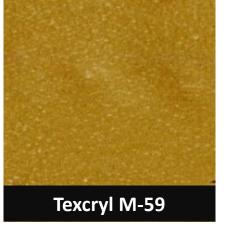
Selecting Substrate Wetting Agents

Additive	Reduction in static surface tension	Reduction in dynamic surface tension	Foaming tendency	Price
Sulfosuccinate	Medium – good	Good	Strong	Low
Alcohol alkoxylate	Low	Very good	Low	Medium
Polyether modified siloxane	Good	Medium	Medium	Medium – high
Fluorosurfactant	Very good	Low	Very Strong	High
Acetylenediol and derivatives	Medium – good	Very good	Low	Very high


Liquid	Surface tension (mN/m)
Water	73
Butyl Glycol	32
Xylene	29 – 30
Butyl acetate	25
Butanol	23
Hexane	18


Substrate	Surface tension (mN/m)
Glass	73
Phosphated Steel	43 – 46
Tin plated steel	35
Aluminum	33 – 35
Untreated Steel	29

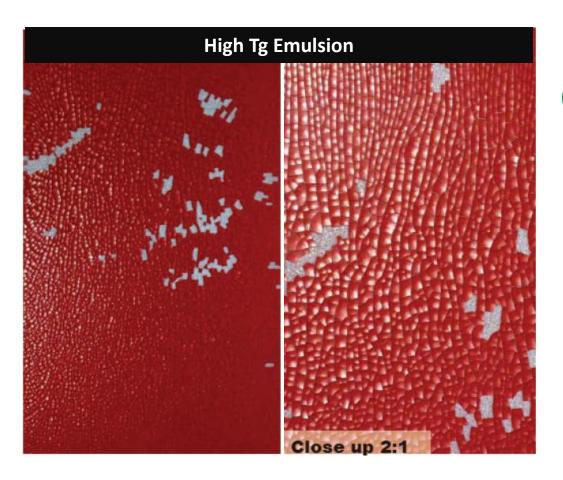
Texcryl M-59 DTM Emulsion

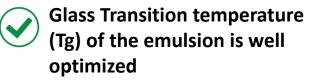


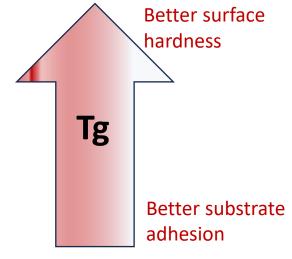
Good continuous film formation. (without addition of cosolvents)

Emulsion is hydrophobic and provides moisture barrier.

(without addition of surface modifying additives)


Emulsion when dried is non-conductive in nature.





Texcryl M-59 DTM Emulsion

Benefits of Texcryl M-59 DTM Emulsion

HEAVY-METAL FREE

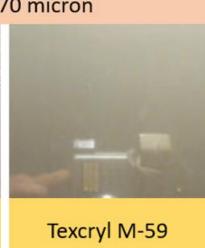
IMPROVE FILM WATER-RESISTANCE

AVOID FILM BLISTERING

SUITABLE FOR CLEAR-COATINGS

SUITABLE FOR VARIOUS METAL NATURES

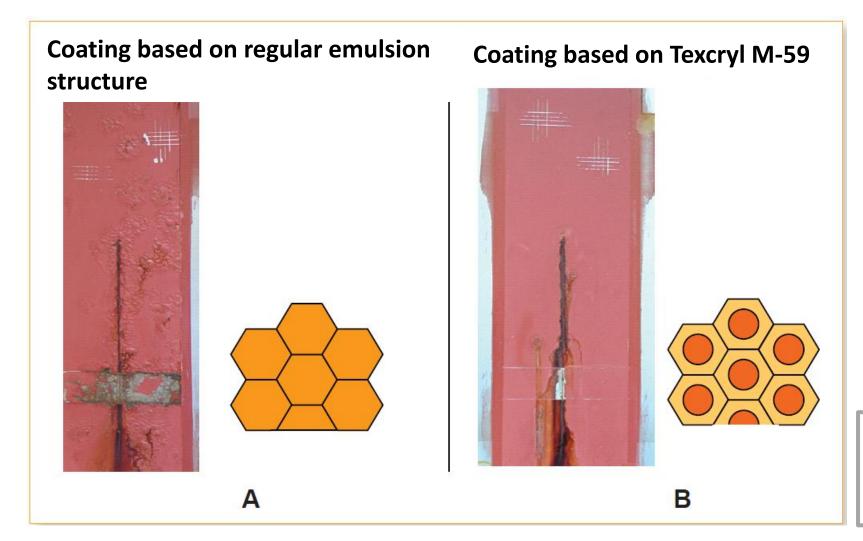
IMPROVE PAINT ADHESION ON METALS


Humidity test

Duration: 45 days, 45°C

Dry film Thickness: 70 micron

Conventional Styrene Acrylic

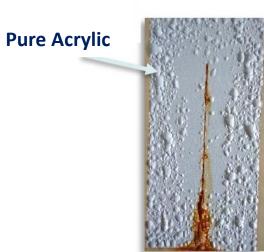


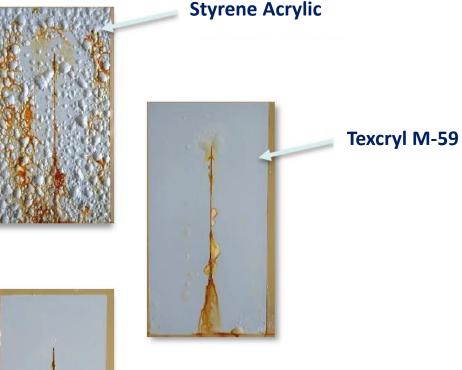
Salt Spray ASTM B117 Duration: 500 hrs. Dry film Thickness: 60 micron Conventional Texcryl M-59 Styrene Acrylic

Adhesion Test
Duration: 100 hrs. humidity exposure
Dry film Thickness: 125 micron

Conventional
Texcryl M-59

Styrene Acrylic

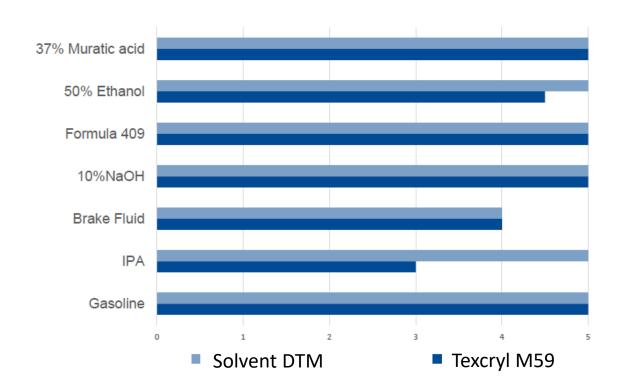


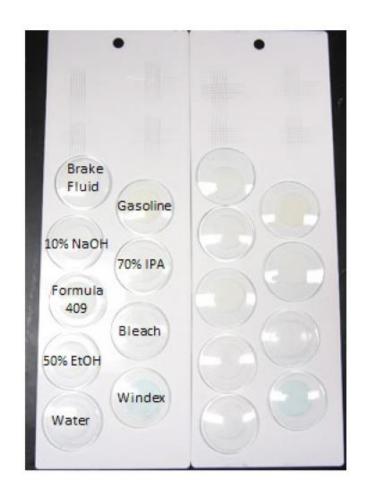

Salt Spray Test 400 hours Substrate: Cold Rolled Steel

Duration: 600 hrs

Dry film Thickness: 80 micron

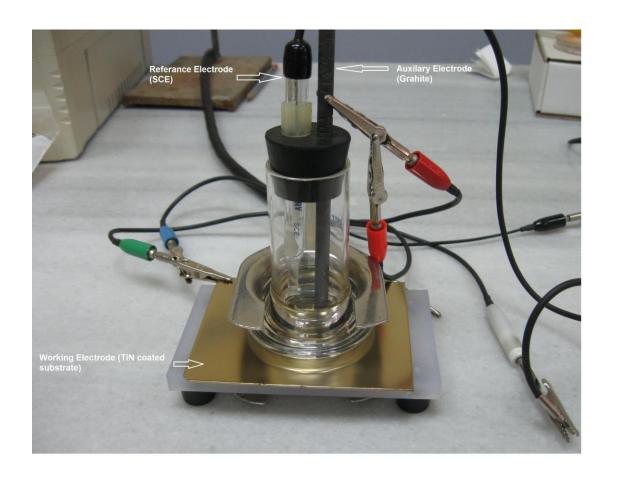
Comparing performance with solvent based coating systems


Solvent based


Water immersion test Substrate: Mild Steel Duration: 600 hrs

Dry film Thickness: 80 micron

Chemical Resistance Spot Test (1hour)


Potentiodynamic Polarization Study

Time	Sample	Corrosion Rate (mmpy)	
0 Days	Texcryl M-59	0.00245	
0 Days	Market WB-DTM	0.0481	
3 Days	Texcryl M-59	0.00328	
	Market WB-DTM	0.0754	
10 Davis	Texcryl M-59	0.0144	
10 Days	Market WB-DTM	0.73	
20.5	Texcryl M-59	0.34	
30 Days	Market WB-DTM	1.15	

Coated on carbon steel.


DFT: 80 micron

Immersion solution: 3.5wt% NaCl soln

Salt Spray Test Comparison of only Emulsion

Market WB-DTM

Texcryl M-59

Salt Spray ASTM B117

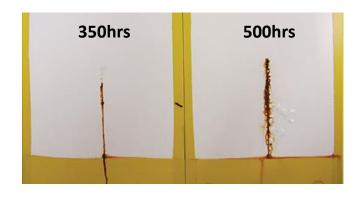
Substrate: CRS

Duration: 400 hrs

Dry film Thickness: 80 micron

Guideline Formulations

Red Oxide DTM Primer



Raw Material	Function	Manufacturer	Wt. %
Deionized Water			17
2% HEC soln	Core Building		0.2
Ammonia	Neutralizer		0.2
Biocide			0.2
UnoWet 9459 N	Wetting agent	Uno Chemie	0.2
Texcryl D-50	Dispersing Agent	Texochem Industries	0.2
Red Oxide Paste	Pigment	and i	20 – 25
Diethylene Glycol	Cosolvent	cher	4
Calcium Carbonate	Filler		14
Zinc Phosphate	Corrosion Inhibitor		2
Texcryl M-59	DTM Emulsion	Texochem Industries	40
Sodium Nitrite	Flash rust Inhibitor		0.5
Texcryl MT-30	HASE Thickener	Texochem Industries	0.5 – 1.0
Ammonia	Neutralizer		0.2
Texcryl DF-02	Defoamer	Texochem Industries	0.2

Guideline Formulations

Waterborne White DTM Paint

Salt Spray Performance PVC: 23 - 25%

Cold rolled steel Gloss: 35 - 40 (60 deg)

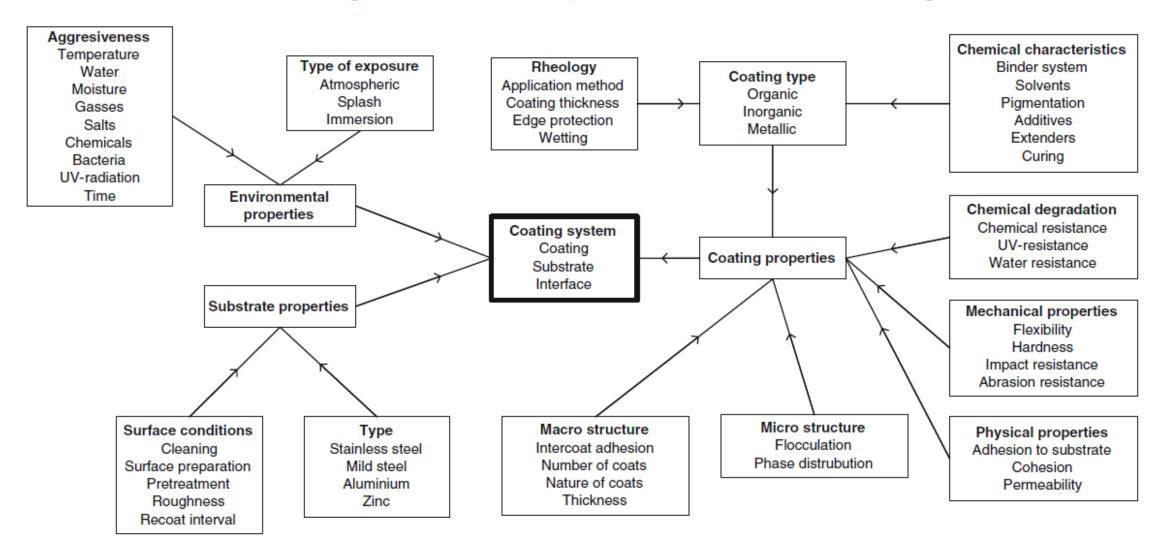
75micron dry

Raw Material	Function	Manufacturer	Wt. %	Procedure
Deionized Water			5 - 7	
Texcryl D50	Dispersing Agent	Texochem Industries	0.5 – 0.8	Prepare the mill base under high
Ammonia	Neutralizer		0.2 – 0.4	shear for 10-
Texcryl DF-02	Defoamer	Texochem Industries	0.1 – 0.2	15min. Add the
UnoWet 9459 N	Wetting agent	Uno Chemie	0.2 – 0.5	components in
Texcryl MT30	Thickener	Texochem Industries	0.3 – 0.6	order.
Titanium dioxide	Pigment		18 - 20	Set the mill base aside.
Calcium carbonate	Filler	che	7 - 10	
Texcryl M59	DTM Emulsion	Texochem Industries	50 - 60	
Deionized water			5 - 7	
Texcryl DF-02	Defoamer	Texochem Industries	0.1 – 0.2	Add the components in
Ascotran H10	Flash rust Inhibitor	Ascotec	0.5 – 1.0	continuous stirring.
Asconium 142DA	Corrosion Inhibitor	Ascotec	2 - 3	
Texanol	Cosolvent	Eastman	1.5 – 2.5	
Mill base				
Biocide			0.2 – 0.3	

Guideline Formulations

Waterborne White DTM **Semi Gloss** Paint

Salt Spray Performance
Cold rolled steel
75micron dry
Duration: 650 hours


PVC: 10 - 12%

Gloss: 55 - 60 (60 deg)

TEXOCHEM	Texochem Industries	

Raw Material	Function	Manufacturer	Wt. %	Procedure
Deionized Water			5 - 7	Duamana tha maill
Texcryl D50	Dispersing Agent	Texochem Industries	0.5 – 0.8	Prepare the mill base under high shear for 10-
Ammonia	Neutralizer		0.2 – 0.4	15min.
Texcryl DF-02	Defoamer	Texochem Industries	0.1 – 0.2	Add the components in
UnoWet 9459 N	Wetting agent	Uno Chemie	0.2 – 0.5	order.
Texcryl MT30	Thickener	Texochem Industries	0.3 – 0.6	Set the mill base aside.
Titanium dioxide	Pigment		18 - 20	usiuc.
Texcryl M59	DTM Emulsion	Texochem Industries	57 - 70	
Deionized water			5 - 7	
Texcryl DF-02	Defoamer	Texochem Industries	0.1 – 0.2	Add the components in continuous
Ascotran H10	Flash rust Inhibitor	Ascotec	0.5 – 1.0	stirring.
Asconium 142DA	Corrosion Inhibitor	Ascotec	2 - 3	
Texanol	Cosolvent	Eastman	1.5 – 2.5	
Mill base				
Biocide			0.2 – 0.3	

Factors affecting durability of DTM coatings

Texcryl M59 current application examples

TEXOCHEM Texochem Industries

About Us

At Texochem, we thrive on innovation, crafting solutions that tackle today's challenges and pioneer the products of the future. With a dedicated focus on sustainability and relentless research, we're shaping tomorrow's possibilities.

Innovation

We are constantly developing new products and enhancing existing ones to provide our customers a technological edge.

Sustainability

For us, sustainability is not just a word but a way of doing business – ensuring environmentally responsible future.

Customized solutions

We believe in long term partnerships and collective growth, by providing our research services on an individual level.

Our Technology Partners

Product Overview

- ❖ Styrene Acrylic & Pure Acrylic Emulsions
- Polyurethane Dispersions
- Dampproof Emulsions
- DTM Emulsions
- Waterproofing Coatings
- Polymer Seal Coats
- **❖** Acrylic Thickeners
- **❖** HASE Thickeners
- PU Thickeners
- ❖ Ammonia Polyacrylate Thickeners
- Dispersing Agents
- Wetting & Dispersing Agents

Contacts

Please don't hesitate to contact us for more information. If you would like samples or if you would like to have any other conversation, we would be happy to help.

Contact	Company	Email	Mobile
Anuj Agrawal	Texochem Industries	anuj@texochem.com	+91 88280 27395

Disclaimer:

While the descriptions, designs, data, images and information contained herein are presented in good faith and believed to be accurate, they are provided for guidance only (and may/may not be from reported test results). Because many factors may affect processing or application/ use, Texochem recommends that the reader make tests to determine the suitability of a product for a particular purpose prior to use. NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH, OR THAT THE PRODUCTS, DESCRIPTIONS, DESIGNS, DATA OR INFORMATION MAY BE USED WITHOUT INFRINGING THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS. In no case shall the descriptions, information, data or designs provided be considered a part of Texochem's terms and conditions of sale. Further, the descriptions, designs, data, and information furnished by Texochem here under are given gratis and Texochem assumes no obligation or liability for the descriptions, designs, data or information given or results obtained all such being given and accepted at the reader's risk.

References

- 1. Sørensen, Per Aggerholm, et al. "Anticorrosive coatings: a review." Journal of coatings technology and research 6 (2009): 135-176.
- 2. https://igbc.in/
- 3. Tiwari, Atul. "Anticorrosion coating industry transitioning to sustainable development." PCI Paint & Coatings Industry (2017).
- 4. M.H. Edser, B.Sc, A.R.C.S, (1972), "Emulsion-based anti-corrosive primers for metals", Pigment & Resin Technology, Vol. 1.
- 5. Amtec Consultants. Corrosion & Coatings Failures On Buildings.
- 6. Corrosionpedia. Blistering.
- 7. CoatingsTech. Water and Solventborne Anticorrosion Coatings via New Binder Concepts. BASF.
- 8. Asconium, Ascotec, France.
- 9. Waterborne Direct to Metal Coatings, formulation guide. BASF.